










The strain and temperature data measured at the
cutting edge of the tool tip were recorded which act as
model outputs, and the experimental conditions (feed
velocity, RPM and DOC) act as model inputs. A state-
space model is obtained using the N4SID algorithm as
stated earlier. The order (n) was set to 2 and the value
of i was set to 3. These values were selected based on
iterative trials so that the state-space parameters are
realistic (i.e. full-rank matrices).

After obtaining the state-space models for the three
different materials, the materials were machined for dif-
ferent set of conditions in order to facilitate the efficacy
of the Kalman filter in one-step-ahead prediction of
strain and temperature. The experimental conditions
are set such that they lie within the maxima–minima
spectrum of the modeling conditions in Table 1 (25 to
125 mm/min feed, 1000 to 4000 RPM and 25 to 125 mm
DOC). The experimental conditions consisted of 27
combinations derived from three different values of feed
velocity, RPM and depth of cut each, varying every sec-
ond. The sample data are presented in Table 2.

The Kalman filter depicted in section
‘‘Methodology’’ was used to predict the time-ahead val-
ues of strain and temperature during micro-turning
operations with the machining conditions as stated in
Table 2.

The chips generated during micro-turning opera-
tions for aluminum and mild steel for the machining
conditions stated in Table 2 were collected and were
visualized under a microscope (Olympus BX51M
microscope with Moticam 580 camera attachment).
The size of the chips was measured using Motic Images
2.0 software available with the microscope package.

Results

The strain and temperature values versus time recorded
at the cutting edge of the tool tip during machining
operations with the machining conditions as stated in
Table 1 are shown in Figure 4.

The state-space parameters extracted from the
N4SID algorithm for the state-space equations (1) and
(2) are system matrix (A) with values

1:0805 0:0262
�0:0599 0:9710

� �
and

1 0:0010
0:2213 1:1710

� �
for alumi-

num and mild steel, respectively; input matrix (B) with

values
�0:0003 0 �0:0817
�0:0016 �0:0002 �0:3962

� �
and

�0:0002 0 0:0207
0:0006 0:0001 �0:3095

� �
for aluminum and mild

steel, respectively; output matrix (C) with values

0:4783 �0:0785
26:3123 �4:1998

� �
and

0:5932 0:0561
28:5341 2:2314

� �
for alu-

minum and mild steel, respectively; feedforward matrix

(D) with values
0:0389 0:0053 0:0088
0:0128 0:0017 0:0071

� �
and

0:0205 0:0044 0:0047
0:0311 0:0038 0:0150

� �
for aluminum and mild

steel respectively; process noise covariance (Qs) with

values
0:0268 0:1161
0:1161 0:9747

� �
3 10�3 and

Table 1. Sample dataset of machining parameters for state-
space modeling.

S. no. Feed velocity (mm/min) RPM DOC (mm)

1 25 1000 25
2 50 2000 50
3 100 3000 100
4 125 4000 125

Table 2. Sample data for prediction of time-ahead values using
Kalman filter.

S. no. Feed velocity (mm/min) RPM DOC (mm)

1 40 1400 30
2 70 2100 60
3 90 2800 90

Figure 4. (a) Temperature variations with machining time and (b) strain variations with machining time.
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0:0001 0:0006
0:0006 0:0091

� �
respectively; the measurement noise

covariance (Rs) with values
0:2851 0:0569
0:0569 0:0550

� �
and

0:9914 0:2432
0:2432 0:2597

� �
for aluminum and mild steel,

respectively; the cross covariance of process and mea-

surement noise (Ss) with values
0:0003 0:0008
�0:0004 0:0010

� �

and
0:0020 0:0042
�0:0144 0:0297

� �
for aluminum and mild steel,

respectively; the Kalman gain (K) with values

0:0070 0:0414
0:0193 0:0899

� �
and

0:0049 0:0131
0:1728 0:6663

� �
for alumi-

num and mild steel, respectively; and the state error

covariance matrix (P) with values
0:2851 0:0574
0:0574 0:0842

� �

and
0:9915 0:2461
0:2461 0:3389

� �
for aluminum and mild steel,

respectively.
The measured values of strain and temperature and

the time-ahead values predicted using Kalman filter for
the machining conditions as depicted in Table 2 are
shown in Figure 5.

The prediction errors in strain and temperature while
machining aluminum and mild steel are depicted in
Figure 6.

The chip morphology and chip size generated while
performing the experiments are shown in Figure 7.

Discussions

Following inferences could be drawn from the experi-
ments, model and prediction of time-ahead values of
strain and temperature employing Kalman filter.

1. The rate of rise in temperature while machining
mild steel is higher than aluminum (Figure 4(a)).
This is due to lower thermal conductivity of mild
steel than aluminum. While machining, mild steel
generates longer, unbroken chips which delay the
heat dissipation from the cutting zone.

2. The strain induced while machining mild steel is
higher (Figure 4(b)) due to higher hardness of mild
steel. It is obvious that while machining mild steel,
the tool experiences higher machining force which
generates higher stress at the tool tip. Due to
higher ductility of aluminum, the generated force
diminishes quickly and the shear does not continue
till material separation from the work takes
place.27

3. The state-space model generated using N4SID
algorithm reveals that there is a correlation
between process noise (Qs) and measurement noise
(Rs), that is, Ss is non-zero. This fact justifies the

Figure 5. Measured and predicted values of (a) temperature while machining aluminum, (b) temperature while mild steel, (c) strain
while machining aluminum and (d) strain while machining mild steel.
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method of augmentation of original state-space
model so that the correlation is eliminated (equa-
tion (3)).

4. The N4SID algorithm is effective in dynamic state-
space modeling for the system. The Kalman filter
based on the process model shows close prediction
and measurement results for strain and tempera-
ture prediction ahead of time (Figure 5).

5. The Kalman filter is capable of predicting the time-
ahead values of strain and temperature with high
accuracy. The maximum errors in prediction of
temperature are 0.4 �C, whereas for strain predic-
tion, the maximum error is 0.3 m2 for both the
machined materials (Figure 6).

6. While machining aluminum, the chips produced
are smaller in size and are broken ones, while for
mild steel, the chips are long and unbroken (Figure
7). This may be due to higher hardness of mild steel
than aluminum. Furthermore, it could be observed
that the size of the chips does not exceed 89 mm for
any of these two materials. The distance between the
cutting edge of tool tip and the sensor attachment in
our experiments was 126 mm (Figure 3). This fact
ensures that the chips do not interact with the sensor
which could otherwise damage the same.

Conclusion

In this work, the strain and temperature induced during
micro-turning operations are measured using FBG sen-
sors for two different materials, aluminum and mild
steel, with time-varying machining parameters. A para-
digm for generation of time-varying state-space model
is facilitated for these two materials which could be
extended for other work materials also. The state-space
model is fed to a Kalman filter in order to predict the
time-ahead values of strain and temperature at the cut-
ting edge of the tool tip. The methodology opens up
new vistas toward intelligent tool condition monitoring
and surface integrity enhancement in machining pro-
cess as strain and temperature are related to tool con-
dition and work surface integrity, respectively. The
time-ahead values of strain and temperature predicted
using Kalman filter enable control engineers to gener-
ate intelligent algorithms to counter sudden tool
breakages and enhance surface integrity of the job by
varying machining parameters in advance. The model-
ing time is reasonable (64 s) which is one-time calibra-
tion affair for a single material. The method proposed
in this research is suitable for micro-machining indus-
tries in enhancement quality of job and counter unne-
cessary tool breakages.
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Figure 6. Errors in (a) temperature prediction and (b) strain prediction while machining aluminum and mild steel.

Figure 7. Microscopic images of chips collected during
machining of (a) aluminum and (b) mild steel.
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